Harmonic and refined Rayleigh-Ritz for the polynomial eigenvalue problem

نویسندگان

  • Michiel E. Hochstenbach
  • Gerard L. G. Sleijpen
چکیده

After reviewing the harmonic Rayleigh–Ritz approach for the standard and generalized eigenvalue problem, we discuss different extraction processes for subspace methods for the polynomial eigenvalue problem. We generalize the harmonic and refined Rayleigh–Ritz approach, which are new approaches to extract promising approximate eigenpairs from a search space. We give theoretical as well as numerical results of the methods. In addition, we take a new look at the Jacobi–Davidson method for polynomial eigenvalue problems. AMS subject classifications. 65F15, 65F50.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variations on Harmonic Rayleigh–ritz for Standard and Generalized Eigenproblems

We present several variations on the harmonic Rayleigh–Ritz method. First, we introduce a relative harmonic approach for the standard, generalized, and polynomial eigenproblem. Second, a harmonic extraction method is studied for rightmost eigenvalues of generalized eigenvalue problems. Third, we propose harmonic extraction methods for large eigenvalues of generalized and polynomial eigenproblem...

متن کامل

The convergence of harmonic Ritz values, harmonic Ritz vectors and refined harmonic Ritz vectors

This paper concerns a harmonic projection method for computing an approximation to an eigenpair (λ, x) of a large matrix A. Given a target point τ and a subspace W that contains an approximation to x, the harmonic projection method returns an approximation (μ + τ, x̃) to (λ, x). Three convergence results are established as the deviation of x from W approaches zero. First, the harmonic Ritz value...

متن کامل

On the Convergence of Q-ritz Pairs and Refined Q-ritz Vectors for Quadratic Eigenvalue Problems

For a given subspace, the q-Rayleigh-Ritz method projects the large quadratic eigenvalue problem (QEP) onto it and produces a small sized dense QEP. Similar to the Rayleigh-Ritz method for the linear eigenvalue problem, the q-Rayleigh-Ritz method defines the q-Ritz values and the q-Ritz vectors of the QEP with respect to the projection subspace. We analyze the convergence of the method when the...

متن کامل

Harmonic Rayleigh-ritz for the Multiparameter Eigenvalue Problem

Harmonic extraction methods for the multiparameter eigenvalue problem willbe presented. These techniques are generalizations of their counterparts forthe standard and generalized eigenvalue problem. The methods aim to ap-proximate interior eigenpairs, generally more accurately than the standardextraction does. The process can be combined with any subspace expansionapproa...

متن کامل

Pii: S0168-9274(01)00132-5

The harmonic Arnoldi method can be used to compute some eigenpairs of a large matrix, and it is more suitable for finding interior eigenpairs. However, the harmonic Ritz vectors obtained by the method may converge erratically and may even fail to converge, so that resulting algorithms may not perform well. To improve convergence, a refined harmonic Arnoldi method is proposed that replaces the h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerical Lin. Alg. with Applic.

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2008